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A Configuration-Oriented SPICE Model for
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Abstract—A configuration-oriented SPICE model for multiple was proposed in [3]. This model represents the congruent
coupled lines in an inhomogeneous medium is presented intransformer bank [4] by dependent sources and leads to a
this paper. The circuit model consists of a network of uncou-  ircyjit model consisting of linear-dependent sources and ideal
pled transmission lines and is readily modeled with simula- del | ¢ fi led t C . i
tion tools like LIBRA and SPICE, and provides an equivalent- ?ay, gemen§ representing U”COUP e ransm'ss'on Ines.
circuit representation which is simple and topologically mean- Simplified versions of the model valid for special cases of
ingful as compared to the model based on modal decomposi-homogeneous electrically identical lines with near-neighbor
tion. This configuration-oriented model is derived by decom- coupling only have also been reported [5], [6]. A rigorous
posing the immittance matrices associated with am coupled-  ,qeaqure leading to the configuration-oriented equivalent-

line 2n-port system. Time- and frequency-domain simulations . it del isti f t ft . i
of typical coupled-line multiports are included to exemplify the circuit model, consisting of a system ot transmission fines

utility of the model. The model is useful for the simulation and ©Only, was reported for the case of homogeneous media in
design of general single and multilayer coupled-line components [7]. Similar useful models valid for special cases of inhomo-
such as filters and couplers and investigation of signal integrity geneous structures have also been proposed and used in the
i, kg sl n famects aseiale 1. i of couplecine circuts [3-11)
P g 9 P 95 In this paper, the configuration-oriented SPICE model for
Index Terms—Circuit modeling, coupled transmission lines, the general case of inhomogeneous multilayer multiconductor
crosstalk, frequency-domain analysis, microstrip filters, SPICE, |ineg is reported. The model consists of a system of trans-
time-domain analysis, transmission lines. L . . . .
mission lines and has simpler SPICE input data requirements
as compared to the modal decomposition-based models. It is
I. INTRODUCTION shown that this configuration-oriented model can, in general,
HE analysis and modeling of coupled transmission sy8€¢ implemented for the simulation of lossy and dispersive
Ttems including multiconductor transmission lines ha@ulhponductor |n'homogeneous structur'e's. The derlvat'lon of
been a topic of considerable interest in recent years. Advanda§ circuit model is based on decomposition of the admittance
in planar and layered interconnect and propagation structufsimpedance matrix of the coupled-line2n-port system.
and components in microwave, and high-speed digital- aﬁpsed—form expressions for _the model lparameters for th_e
mixed-signal circuits has resulted in increased interest fPortant cases of asymmetric coupled lines and symmetri-
efficient accurate analysis and design of these circuits af three coupled-line structures are included in this paper.
systems. The circuit simulation and design of these structurd@€- and frequency-domain simulation results for typical
is normally based on the characteristic parameters derivaiHctures are presented to demonstrate the applications of the
from a rigorous frequency-dependent electromagnetic (EM§Nfiguration-oriented SPICE models.
solution or the line constants derived from quasi-static solu-
tions. The quasi-static solutions lead to {44, [L], [G], and I
[C] matrices associated with the multiconductor system. The ] ] ) }
frequency-dependent full-wave solutions lead to the compu-TN€ configuration-oriented SPICE model consists of a net-
tation of eigenvalues, eigenvectors, and eigenfunctions frdif@rk of uncoupled transmission lines characterized by their
which equivalent frequency-dependent elements of [file Propagation constants and impedances. The model can be
[L], [G], and[C] matrices can also be calculated [1], [2]. readl!y_derlved from the admittance (mpedgnce) matn.x char-
Several circuit models based on the solution of coupl&§te€rizing thezn-port system, as described in this section.
transmission-line equations have been proposed in the pastThe procedure fqr deriving the expression for the admittance
For the case of lossless lines with frequency-independent liffleimpedance matrix of the genetai-port is well known and
constants, a SPICE model based on modal decompositidﬁ'}?ase‘j on the solution of coupled transmission-line equations
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where vectors] and] represent voltages and currents on thine two-port having lengthl, propagation constant, and
lines and characteristic admittanck. is given as

[Z(w)] = [R] + jwll]  [Y(w)] = [G] +jw[C] Y. coth(yl)

—Y, csch(~l)

=Y. csch(yl)

[)/7] 2x2 = )/:: (j()1;}1( ’Yl ) .

)
[R], [L], [G], [C] are the per-unit-length line constant matrices

whose elements are, in general, frequency dependent. E}ﬁnmetry of |
coupled transmission-line equations (1) and (2) are decouplgthaq by[Y]

with the help of voltage and corresponding current eigenvec

. oS i .
matrices [My] and [M;] ([M;] = [Mv] "), respectively, e nartial admittance matrii’,,,] for modem is synthesized

leading to the characterization of the generdines 2n-port 3 homogeneous configuration-oriented model [7] having
by its admittance matrix [12] as given by (see part A in thg,hgmission-line electrical lengths corresponding torttth-

Y*] implies that the2n-port network repre-
consists of these transmission lines connected
W a so-called “configuration-oriented” manner [7]. That is,

Appendix) mode eigenvalue. The complete network is then obtained as
V] = Ya] [VB] 3) a parallel c_ombination of the, 2n ports with _ea_tcth-port
T Ys] V4] corresponding to an orthogonal mode. A similar procedure
h can be applied to the impedance matrix leading to a dual
witl

topology and corresponding network of transmission lines that
is equivalent to the multiconductor multiport. It is seen that
the admittance or impedance matrix of anmulticonductor
transmission-line system can, in general, be simulated by

[Ya] = [Yim] * [My][coth(yil)|aiag [M]"
[Ya] = [Yim] * [Mv][—csch(yil)laiag [M]"

Yivu,  Yimg, Yoy, n?(n + 1)/2 transmission lines. In the case of symmetry,
Yimlnsn = ’ ’ the number of lines are reduced depending upon the type of
' ' symmetry.
Y, Yim

nn

An alternate approach of deriving these circuits involves
where~y; represents théth eigenvalue and is théh normal- the use of the characteristic impedance or admittance matrix
mode propagation constafity y] is the line-mode admittance of the coupled system. These matrices represent a network
matrix whose elemenl’yy;, —represents the characteristiavhich simultaneously terminates all the modes on all the
admittance of theth line for mth mode and is the length lines. The elements of these matrices represent the charac-
of the uniform coupled multiconductor system. The operatégristic immittance of the transmission lines that constitute
“x* was defined in [12] for[C] = [A] = [B], as a product the equivalent circuit. The length of the transmission lines

of corresponding terms of matricgd] and[B]. It is readily
shown that the admittance matrix of tBe-port, as given by
(3), can be decomposed as

n

Y= [¥ul

m=1

(4)

The [Y,,,] represents the partial admittance matrix of the
port corresponding to mode and can be expressed as

COth(’le) [Ym] _CSCh(’le) [YZIT] :| (5)

— ch
Bmlansczn = [—csch(fymn[ym coth(ym )Y

ch

where
Y Tnsen = (Yru] # [My ) [Doniag[M7]" (6)
and
[Drn]diag = {g:ﬁgj:j; : ?: j i Z } (7)

The symmetric matriXY]'] (see part B in the Appendix)

corresponds to the electrical length of the corresponding
mode. Both the2n-port and characteristic immittance-matrix-
based decomposition procedures, of course, lead to the same
equivalent-circuit representation (see part C in the Appendix).

The procedure presented in Section Il is applied to general
asymmetric and symmetric three-line cases to illustrate the
technique and derive closed-from expressions for the modal
parameters for these two important cases.

N ETWORK MODEL FOR UNIFORM COUPLED LINES

A. Asymmetric Coupled Lines

A general uniform coupled two-line system can be decou-
pled in terms of two propagating modesand ¢ [13]. The
voltage and corresponding current eigenvector matfit&s],
[M;] can be defined as ([13])

=[x, g

defined in (5) and (6) corresponds to the characteristic admit-

tance matrix for moden, and its(4,5)th element is given and

el . 1 [R
e . . . My =(My]77)" = [ B
(0.5) = V(i m)My () ME (7). (@) Ml =0 =5
The matrix[Y;,] in (5) is similar to the2n-port admittance where~, and . represent eigenvalues and are the normal-

matrix corresponding tm coupled lines in a homogeneousmode propagation constants for theand ¢ modes, andR,
medium. Recalling that the admittance matrix of a transmissiamd R, represent the ratio of voltage on line 2 with respect

—R.

-1 1} (10)
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to line 1 forn andc modes, respectively [13]. The line-mode
admittance matriXYrn] is expressed as 1 Vi Tn
Yo Yz
[Yim]axe = |:Y;; le}- (11) ; Yhe, Te .
The admittance matrix of the general asymmetric two-line an, T
system [13] obtained from (3), (10), and (11) is expressed as
a sum of two matrices corresponding to the two modes using Ylae, Te
(4)—(8), and are found to be
2 1 3
Yioe, Te
Vs = { cotb(yDYF]  —esch(vD[YF]
) —csch(vD[YE]  coth(vDYE] |, YTon, Tn
coth(v.D)[Ygq] —esch(v.D)[Yg] (12)
—esch(ve)[Y§)]  coth(eD[YE] |, @
where
O ] 04
Rcyﬂ-l —Yﬂ-l z T TTl?
T — Rc - R7T (. R7T F T
[ ch] - Yo —R.Y. > ) 1 T e
(Rc - RTF)/RCRTF Rc - R7T e ¢
and - 1
~R.Ya Ya ceo e
1 R.— R, R.— R, F T
[Y;h] o L2 R.Y.» ’ (13) o 212 T i
20 T 3
(RC - RTF)/RCRTF Rc - R7T
Each matrix[Y],. and[Y]. in (12) can be synthesized, in 7130, To
general, by three transmission lines connected at the input
and output ends in a configuration [7]. These two networks [ T
connected in parallel yield a complete equivalent circuit, as Zlan Tn
shown in Fig. 1(a), for the coupled-line system. The expres- J j7
sions for the characteristic admittance of the transmission lines ()

in the SPICE model in Fig. 1(a) correspond to the admittange . .
. . . . Ig. 1. (a) SPICE model for asymmetric coupled lines based on a four-port
matrices given by (13) and are given by [see part A in th@mittance matrix. (b) SPICE model based on four-port impedance matrix.

Appendix, (37) and (38)], (T. and T, are the time delays associated with thand = modes. In case
of lossy coupled lines, the delays and characteristic admittances of uncoupled
vyl — Yﬂ(Rc - 1) transmission lines are function of frequency.)
1l — Rc _ Rw
yi— ReYoo(Re — 1) characteristic impedance of the transmission lines in this
" R.— R; SPICE model [see Fig. 1(b)] are given by
Yo
Yl :A Z7T Rc
"B R, =g~ (1)
yi = Yl = Bx) L Zm
le R.— R, ZQﬂ_:m(l—Rﬂ—)
vj, - Aot i ZaRhs
‘ R. — Ry " R.—R
1 el Za Ry
Yae R.— R, (14) Zi. = R (R.—1)
As noted earlier, the impedance matrix can also be used to gl Zeo (R, — 1)
construct an alternate equivalent model of the coupled system. 2T R, —R; ¢
The impedance matrix of a general asymmetric coupled-line P ZaR.Ry (16)
system given in [13] is readily decomposed into two modes 37  R.—R,’
[Z)axcs = [Zn)axa + [Ze]axa- (15) It should be noted that the characteristic impedance and

admittance matrices of the coupled-line system are symmet-
Each matrix in (15) can be modeled by three transmission lines and represent a passiveport network. However, the
connected in & configuration for each mode. The completeharacteristic impedance of some transmission lines in the
equivalent circuit is shown in Fig. 1(b). The expressions faquivalent circuit can be negative depending on modal decom-
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given by [14]

1 1 1
[My]=|0 Ry R (17)
-1 1 1
and
1
M= (M ] VYW= -
R'vl - R’U2 _R’U2 R'vl
0 2 —2|. (18)

R’U2 - R'vl _R’U2 R'vl
The line-mode admittance matr[¥7] is

Yor Y1 Yo
Nimlaxs = |Yaz Yo Yoo (19)
Yoz Yiz Y3

and~,, 7, Y. are the propagation constants associated with the
normal modes:, b, andc [14]. For three symmetric coupled
lines Y,; = Y3, i1 = Y3, andY,; = Y.3. Substituting
(17)—-(19) in (6) leads to the characteristic admittance matrices
for the modesz, b, andc¢, and are given in (39).

The six-port transmission-line network is then readily con-
structed as three modal networks connected in parallel. The
complete network then consists of 13 transmission lines. The
expressions for the characteristic admittances for the lines are

Fig. 2. (a) SPICE model for symmetrical coupled lines based on a four-pgjiven as follows [see (37) and (38), part C in the Appendix]:
admittance matrix. (b) SPICE model based on four-port impedance matrix.

(teven @ndt,qq are the time delays associated with the even and odd modes. Yo 0 —Yo1
In case of lossy coupled lines, the delays and characteristic admittances of 2 2
uncoupled transmission lines are function of frequency.)
Y3l = 0 0 0
ch
position. The decomposition of the characteristic admittance —Yo3 Y3
matrix (stable and passive network) into the sunngfartial 2 0 BN

admittance matrices leads to a stable configuration-oriented ., 1

model in spite of the fact that some of the elements are Yol = 2(R,1 — Ry2)

not passive. This is like having two equal-length lines in —RyYy, 2Y), —RyYi,
parallel. For a stable system, one of them can have nega- N =Ry R.sYee 2R,uYis —RuiRyoYs
tive characteristic admittance as long as the total combined —RyoYs 2Y)s —RyoYs
characteristic admittances of the two lines is positive. These

negative-impedance transmission lines can be simulated a5nd

positive-impedance transmission-line elements with the linear_ 1

dependent sources for the impedance conversion or dirediynl = 2(Ry1 — Ry2)

as negative-impedance transmission lines on many computer-
aided design (CAD) tools like LIBRA. Furthermore, in case

of symmetric lossless coupled linés. = —1, R. =1, Y, =
Y2, andY,; = Yoo leads toYoqq = 2Y4. and Yeyen = Y7,

Ry Ye —2Yo Ry1Ya
ARy RyYee —2R0Ye RuRpYe|. (20)
R Yes —2Y.3 R Yes

and the model reduces to the four transmission-line systenfTransmission lines between ports and terminals are as

presented in [9] [see Fig. 2(a)] or to theequivalent network,
as shown in Fig. 2(0Y Zeyen = 273, and Zoaa = Z1i,).

follows.

Similarly, for the case of lossless symmetric coupled lines. ports 1 and 4:

in a homogeneous mediutw, = 7.), the equivalent system
reduces to a three-transmission-line system, as in [7].

B. Symmetric Three Coupled Lines

Y1 (1-Ry2) Ya(Ru-—1)
R'nl - R'I;Q R'nl - R'I;Q '
e Ports 2 and 5:

For the case of symmetric coupled three-line structures, Yoo R1(1 — Ry2) YaRp2(R,—1)
the voltage and associated current eigenvector matrices cor- Ry — Ry Ro1 — Ryo

responding to the three propagating modesh, and ¢ are
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M . R+ R, GFG,
Ports 3 and 6: Yeo %jw\/(Lj:Lm) (CFCr)+ = 1 3F2 Ze o
Yi3(1 — Rya)  Ye3(Rop — 1) €0 ”
R'vl - R’U2 R'vl - R’U2 ' ( )
e Terminal pairs (1, 2) and (4, 5): These line constantsi{ R,., L, L., G, Gn, C, Cy)
~Yy, Y., can be calculated by using quasi-static as well as full-wave

analysis of the coupled system [1], [12], [16]. For the general

Ror = Rz oy = Rz asymmetric coupled lines and multiconductor coupled systems,

» Terminal pairs (2, 3) and (5, 6): the modeling of individual lossy dispersive lines [15] in terms
RyiRyoYso —Ry1RyoYeo of n_etv:/orlt< fgncg{oqs, f'reqluertmyt—;iependentt !lneI conslta(rjltlg, or
2(Bot — Rus)  2(Rot — Run)’ ig:éva ent circuits is similar to the symmetrical coupled-line

Terminal pairs (1, 3) and (5, 6):

Y1 R,2Yy1 R, Y. D. The Procedure
2 2(Ry—Ru2) 2(Ru— Rya) The general procedure for building a configuration-oriented
The electrical length of these transmission lines are given 5 !CE model of generab-line 2n-ports is summarized as
the corresponding electrical length of the three modes.  follows.
1) Evaluate propagation constafitss), eigenvector matri-
C. Lossy Dispersive Multiconductor Coupled Lines ces ([M;] or [My]) and line mode admittance matrix

([Yrum]) elements using full-wave analysis [1] or com-
pute [R], [L], [G], and [C] matrices using guasi-static
analysis [12] and then evaluate propagation constants
(v's) and a corresponding voltage eigenvector matrix
using an eigenvalue equation ariyy] line mode

In general, the coupled-line systems have conductor and
dielectric losses and, therefore, the uncoupled transmission
lines in the configuration-oriented model have frequency-
dependent complex propagation constants and the complex
charact_eristic_impeda_nces. The multiport S_PICE simulation for admittance matrix whosék, m)th element corresponds
Io;sy dispersive multlconductor couplgd lines can be accom- to the characteristic admittance of thth line for mth
plished by modeling the uncoupled lines obtained from the mode [12]-[14].
formulation presented in Section Il in terms of their two-port 2)
frequency-dependent network functions such[¥}k or [S]-
parameters or modeling them in terms of equivalent circuits
consisting of ideal lumped and delay elements, as show )
in [15], for a single microstrip. The frequency-dependent
complex characteristic parameters (propagation constants, line-
mode impedances, eigenvector matrices) are computed using
a rigorous frequency-dependent technique like the spectral-
domain approach [12] or by using CAD-oriented quasi-TEM
methods, e.g., [16]. The model transmission-line parameters,
can be obtained in terms of equivalent frequency-dependent
self and mutual line constants per unit length, as shown in [1].
As an example, for the simple case of identical coupled lines,
the even- and odd-mode propagation constants and impedances
are readily expressed as IV. RESULTS

In order to validate the accuracy of the models and demon-

Veso strate their usefulness and versatility, the frequency- and
= VI(R+ Ry)+jw(l + Ln)[(G F Gm)+iw(CF Cn)l  time-domain responses of typical coupled-line structures are
(21) presented. Unlike most of the earlier circuit models, the present

model can incorporate conductor, dielectric losses, and the

Using (4)—(8), decompose the admittance matrix, as in
(3), into a sum of partial admittance matrid&s,], each
corresponding to thenth mode.

Each partial admittance matrix corresponding to a prop-
agation mode is synthesized agsaport network with
the two wire transmission lines, as in [7] [see part C in
the Appendix, (37) and (38)], with the transmission line
lengths equal to the electrical length of the respective
mode.

) Connect th&n-port networks of each partial admittance
matrix in parallel to obtain the configuration-oriented
SPICE model of a general-line 2n-port.

and dispersion due to this losses for the systemnotoupled
(R=£ Rm) + jw(L % L) lines. The multlcqnducton-lme system can be repre_sen'Fed
oo = (G T G) + jo(C T Co) (22) as a2n-port (multiport) element, independent of termination

T om) g T om conditions at those ports, enabling us to simulate2heort

in terms of the frequency-dependent equivalent-line constaMtéh linear and nonlinear terminations in a complex circuit

representing self and mutual inductances, capacitances, regfironment.

tances, and conductances per unit length of the lines. For th&ig. 3 shows the time-domain response of a symmetrical

case of low losses, (21) and (22) can be simplified as lossless microstrip line terminated with the impedances given
by z; (2: = \/zez,) at all the four ports. Due to the medium

Z. .~ JLE L (23) inhomogeneity, both the even and odd modes are excited and
7 CFCp arrive at the terminating ports at different times, generating
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Fig. 3. Step response of the symmetric lossless coupled microstrip four-port. 05
e = 4.5, wl = w2 = 0.18 mm, s1 = 0.04 mm, h =0.1 mm, L=1 h .\)O 100 200 300 400
mm, strip thickness= 12 um. T

Fig. 5. Time-domain response of the asymmetric lossless coupled microstrip
sl w2 four-port. €, = 9.8, wl = 0.24 mm, w2 = 0.48 mm, s1 = 0.04 mm,
tan 8 -0.05 h = 1.0 mm, L = 9.3 mm, strip thickness= 12 pm.

15

domain waveforms are found to be identical in both cases.
Additionally, the asymmetric coupled microstrip four-port in
this example is the same as that of [3] and validates the
pa———— accuracy of the present model.

- Fig. 6 shows the frequency response of edge-coupled two-
section filter simulated by LIBRA using the coupled line
model given in Fig. 1(a). Each section consists of asymmetric

05 coupled microstrips. The effect of dielectric and conductor

0 5 TW gg 15 20 losses are also included in the simulation. The example demon-

' strates the application of the configuration-oriented model

Fig. 4. Time-domain step response oI the symmet~ric coupled minOSt'ﬂﬁesented here for the design of general asymmetric and
O o e = 1Sm:p o = O "m. multiconductor coupled line circuits. The values of g,

Loss tangent of dielectric layer (taf) = 0.05. [G], [L], and [C] matrices for each asymmetric coupled line

section in this filter are obtained by using a CAD-oriented

it is can be seen that in thguasi-TEM method [16]. The modeling of the individual lossy

equivalent circuit, for the even-mode excitation, the signgfSPersive lines is done in terms of network functions [15].
transmission is only through the transmission lines associatHee oPtained response in Fig. 6 is similar to that of response
with the even mode. Similarly, for the odd-mode excitatiorpPtained by the simulation of this filter using a_full-dqmam
the signal transmission is through the lines associated with th! 00! (HP-EEsof, Momentum). The configuration-oriented
odd mode. The response is exactly the same as that found’B‘%ﬂel can, in general, include the frequency variationg®f
using the SPICE model based on the modal decomposition [§]):, [£]: and[C] matrices and is dependent upon the avail-
The time-domain step response of a lossy symmetrical ¢ ility 'of a single lossy d|sper§|ve transm|§5|on—l|ne model,
pled line having both dielectric and conductor losses is sho which several good CAD-oriented techniques are already

in Fig. 4. Due to the presence of these losses, the uncoup?é/@"abl_e' . .
transmission-line expressions given in (14) or (16) are fre- | € time-domain response for three symmetrical coupled

quency dependent. The approximate expression similar to (i%%sllessll!nes is shown in Fig. 7 in order to demon_strate.the
and (24) are used to simulate the individual (four) uncouplé@pPlicability of the model presented here for the simulation
lossy transmission lines given in (14) and (16). The simulatioRé m_ultlcondgctor transmission lines in hlgh-speed digital
are performed using the configuration-oriented SPICE mod&gcwts. The input and output pPrtS are termln_ate(_j bys50-
[“x topology™: Fig. 2(a) and “T" topology”: Fig. 2(b)] with |mpeda_nces, except port 5, Wh|ch drives a h|gh-|mpedz_;\nce
the HP-EEsof CAD tools. As expected, the time-domaiffMOS m_verter. Th_e time-domain step response shows S|gr_1al
waveforms obtained from both the- and T-topology-based degradatlpn, cpuplmg, and crosstalk effects between the active
configuration-oriented SPICE models are found to be identic@d Passive lines.

The time-domain step response of an asymmetric coupled
lossless microstrip structure is shown in Fig. 5. As in the V. CONCLUSIONS
case above, the simulations are performed using the In conclusion, a new configuration-oriented SPICE model
[(A4): Fig. 1(a)] and thel-topology-based [(16): Fig. 1(b)] for multiple—coupled microstrip lines and other multiconductor
configuration-oriented SPICE models. The obtained timstructures in an inhomogeneous medium has been developed

w3

far-end crosstalk. Intuitively,
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Fig. 6. Frequency response of a two-section asymmetric coupled microstrip filter on alumina for different dielectric losges=(t@n0002 and
tané = 0.042). (a) Magnitude ofS11 in decibels. (b) Magnitude o521 in decibels. (c) Phase response $21. ¢, = 9.8, wl = 0.4 mm,

w2 = 0.25 mm, s1 = 0.04 mm, h = 0.63 mm, L = 3.75 mm.

. coupled multiconductor lines can, in general, be simulated
T n?(n + 1)/2 transmission lines. The configuration-oriented

SPICE model provides a simple alternate equivalent network
in terms of coupled multiconductor characteristic parame-

@ :, VE;J ters, _Which are read?ly obtair_1ed from_rigorous full-wa_lve or

O o5 _ 8 quasi-TEM computations. This model is compatible with the
= ) i ?: ﬂ“mgé simulation of lossy dispersive systems and should be quite

{ j . . helpful in the frequency- and time-domain simulation and
0 %JT; design of multiconductor coupled systems. Several frequency-
and time-domain simulation examples have been presented for

05 typical interconnect and microwave component structures to

0 100 200 300 400 demonstrate the applications of the model.
T.ps
Fig. 7. Step response of the lossless three symmetric coupled microstrip APPENDIX

six-ports (5062 termination at port 1, 2, 3, 4, 6 and port 5 terminated at high
input impedance CMOS invertes, = 12.8, wl = 0.3 mm, s1 = 0.3 mm, . . .
h = 0.635 mm, strip thickness= 12 um. A. Admittance Matrixn Coupled-Line2n-Port System
A procedure similar to that in [13] leads to the solution of
_ _n coupled transmission-line equations [(1) and (2)] in terms
and presented. The model is based on the decompositiongphormal-mode parameters. Using this procedure, the expres-

the generaln-line 2n-port immittance matrix into a sum of sjons obtained for the voltages and corresponding currents in
partial-immittance matrices corresponding to each mode. Th@ms of 2n waves is given by

complete equivalent network is obtained by combining the o .
resultingn 2n-port configuration-oriented models synthesized [V]nx1 = [Mv][e™" *laiag[ar]nx1 + [My][e” " laiag[ai]nx1
for each partial immittance matrix. It is observed that (25)



2004 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 12, DECEMBER 1998

[tlnx1 = (Yom] * [Myv]) e " diag[or]nx1 C. The Procedure: Based on Characteristic
— ([Yim] * [My D[ |aiaglar] e (26) Admittance or Impedance Matrix

An alternate approach can also be used in deriving the

where the columns of matri/y] are the voltage eigenvec-qq jivalent circuit with the help of the characteristic impedance

tors, v; is theith normal-mode propagation constafif ] is matrix [Z] or admittance matriXYe] ([Yen] = ([Yin] *

the line-mode admittance matrix, and operatet i5 defined My])[My]1). For example, the characteristic admittance
in (3). The admittance matrix for the multiconductor couple ind impedance matrices for the coupled two-line structure,
line 2n-port system is obtained by combining (25) and (26)as given in [13], are

The final expression for the admittance matrix is given in (3).

_RWY;I + Rcyﬂ'l Y;l - Y7T1 ]
B. Proof: [Y’] Is Symmetric [You] = y}i < :}12/:2 Rcé 5 Egyﬂ, (33)
It is clear from (25) and (26) that in a systemsoftoupled (R, — R:)/R.R, R, — R, ]
lines, these2n waves actually consist of two independengng
sets ofn waves, each propagating in the opposite direction. ZR. — Z R, Tt — Ty
Moreover, these, waves satisfy the coupled transmission-line R.— R, (Ry — Ro)/R.Rx
equatlons (l) and (2)! Ieadlng to [ZCh] = Zc2 - Z772 Rch2 - RTFZTFQ (34)
R.— R R.— R _
Z|[Y[Mv] = [Mv][v]dia 27 ¢ i , © B
21Ny ] = [Mv]D i where R. and R, are the ratio of voltage on conductor 2 to
and the voltage on conductor 1 for the two mod&s,, Y.o, Yi1,

Y.> are corresponding line mode admittances afd, Z.»,
WIZ1([Yea] = (M ]) = (Vina] * [My D[] Jaiag: (28) Z1, Zr are the line mode impedances.

Taking the transpose of (28) and observing that the matrixThe above impedance or admittance matrix for two coupled

[Z] and [Y] are symmetric yields lines can be expressed as a sum of two matrices, with the
m-mode ande-mode terms separated as
(Viml * [My DT Z2]1Y] = [V aiag(Vin] * [My )T, (29) R.Y —Yr
The columns of matrixMy-] are the right eigenvectors and[Yc.] = RCY; QR" }_z‘}g;y}i 5
the rows of matrix([Yr.n] * [My/])? are left eigenvectors of (R. - R.)/R.R. R.-R
matrix [Z] [Y]. The equation obtained by multiplying on the CTE T IRy T Ty
right-hand side of (27) by{Y1.m]+[My])* and then subtracting R _R. R _ R
the equation obtained by multiplying on the left-hand side of + Yo, RY. (35)
(29) by [My] is (R.— Rx)/R.Rx R.— R l.
(Yeu] * [My )T My diag — [V ] diag and 7 R
Yim] * [My )T [My] =0. (30 w7t —onl
([Yom] = [Myv])" [My] (30) (Za] = R.— R, (R.-R.)/R.R,
Equation (30) shows thafYy ] « [My])T[My] commutes —Zin2 — Rl
with the diagonal matrix of distinct elements and, therefore, R.—- R, R, — Ry 7
should be diagonal. Therefore, —ZaBr Ze1
T + Rc - R7T (Rﬂ' - Rc)/RCRﬂ' (36)
([YL]\,{] 3k [Myf]) [M‘/] = [)\i]diag' (31) ZCQ Rch2
c T R7T Rc - Rﬂ— c

The values of\; depend upon (1) and (2). Combining (31

. . )I'hese matrices are symmetric and singular. From these ma-
with (6) gives

trices, each associated with a mo@e), the corresponding

Y] = ([Yom] * [MV])[)\i]gi:;g[Dm]diag([YLM] * [My])T configuration-oriented models are obtained by using two wire
— M ]_T[)\‘] e[ Dyaioa[M ]_1 transmission lines. The characteristic admittance of the trans-
T ildiaglHm]diag TV mission line with its one end connected to poitand k is

=[Yarr (32)  given by
where the matri{D,,]aiag is defined in (7). Yie,, = =Y (i, k)m (37)
Yo1(Ry1 — Ryz) — YRz + Ya R Y1 —Ya Yor(Roz — Ry1) — YR+ Ya R
2(R'vl - R'UQ) R'vl - R’U2 2(R'vl - R'UQ)
V] = —Ry1 R0Yeo + Ry Yoo 1Yy — RippYeo —R1RpYeo + Ry RpYen (39)
oh Z(Rbl - R'UQ) (R'vl - R'UQ) Z(Rbl - R'UQ)
—(Ry1 — Ry2)Yes — Ry2Yis + Ry Yes Y3 — Yes —(Ry2 — Ry1)Ye3 — Ry2Yis + Yes R

2(R'n1 - R'l;?) R'nl - R'I;Q 2(R'1;l - R'l;?)
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and the characteristic admittance of the transmission lifiel] F. Romeo and M. Santomauro, “Time-domain simulatiomafoupled
Connecting porti and ground (0) is transmission lines,IEEE Trans. Microwave Theory Teckol. MTT-35,
pp. 131-137, Feb. 1987.
[12] V. K. Tripathi and H. Lee, “Spectral-domain computation of characteris-
— Z Ych(i, k)rn- (38) tic impedances and multiport parameters of multiple coupled microstrip
lines,” IEEE Trans. Microwave Theory Tec¢lvol. 37, pp. 215-221, Jan.
1989.
V. K. Tripathi, “Asymmetric coupled transmission lines in an inhomo-

The length of transmission lines corresponds to the electridif geneous medium JEEE Trans. Microwave Theory Techvol. MTT-23,

length of mode. Therefore, the matricB$;,] and [Z.,] can Pp. 734-739, Sept. 1975. ' ' _ S
be synthesized with six transmission lines leading to the safié ——, “On the analysis of symmetrical three-line microstrip circuits,”
IEEE Trans. Microwave Theory Te¢hlvol. MTT-25, pp. 726—-729, Sept.

equivalent circuits, as shown in Fig. 1(a) and (b). 1977
The characteristic admittance matrix of three symmetricals] v. K Tripathi and A. Hill, “Equivalent circuit modeling of losses and

coupled lines is derived in a similar manner in terms of the dispersion in single and coupled lines for microwave and millimeter-
l d dmitt f th l th d It d wave integrated circuits,JEEE Trans. Microwave Theory Techvol.
ine-mode admittance of three lines, the mode voltages and 35", 556262, Feb. 1988.
current ratios and propagation constants for the normal modgs] G. L. Matthaei and G. C. Chinn, “Approximate calculation of the high-
and is given by (39), shown at the bottom of the previous page frequency resistance matrix for multiple coupled lines,TREE MTT-S

. . Int. Microwave Symp. Dig Albuquerque, NM, 1992, pp. 1353-1354.
[14], whereY,1, Yo, ---, etc. are the line mode admittances
of three lines for modes, b, and ¢, and the corresponding
voltage and current eigenvector matrices are defined in (17).
For three symmetric coupled line¥,; = Y,3, Y1 = Y3,
and Y.; = Y.3. This matrix can be expressed as sum
three matrices for each mode and is readily realized leadi
to the transmission-line network of 13 transmission lines
a six-port network.
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