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Abstract—A configuration-oriented SPICE model for multiple
coupled lines in an inhomogeneous medium is presented in
this paper. The circuit model consists of a network of uncou-
pled transmission lines and is readily modeled with simula-
tion tools like LIBRA and SPICE, and provides an equivalent-
circuit representation which is simple and topologically mean-
ingful as compared to the model based on modal decomposi-
tion. This configuration-oriented model is derived by decom-
posing the immittance matrices associated with ann coupled-
line 2n-port system. Time- and frequency-domain simulations
of typical coupled-line multiports are included to exemplify the
utility of the model. The model is useful for the simulation and
design of general single and multilayer coupled-line components
such as filters and couplers and investigation of signal integrity
issues, including crosstalk in interconnects associated with high-
speed digital- and mixed-signal electronic modules and packages.

Index Terms—Circuit modeling, coupled transmission lines,
crosstalk, frequency-domain analysis, microstrip filters, SPICE,
time-domain analysis, transmission lines.

I. INTRODUCTION

T HE analysis and modeling of coupled transmission sys-
tems including multiconductor transmission lines has

been a topic of considerable interest in recent years. Advances
in planar and layered interconnect and propagation structures
and components in microwave, and high-speed digital- and
mixed-signal circuits has resulted in increased interest in
efficient accurate analysis and design of these circuits and
systems. The circuit simulation and design of these structures
is normally based on the characteristic parameters derived
from a rigorous frequency-dependent electromagnetic (EM)
solution or the line constants derived from quasi-static solu-
tions. The quasi-static solutions lead to the, , , and

matrices associated with the multiconductor system. The
frequency-dependent full-wave solutions lead to the compu-
tation of eigenvalues, eigenvectors, and eigenfunctions from
which equivalent frequency-dependent elements of the,

, , and matrices can also be calculated [1], [2].
Several circuit models based on the solution of coupled

transmission-line equations have been proposed in the past.
For the case of lossless lines with frequency-independent line
constants, a SPICE model based on modal decompositions
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was proposed in [3]. This model represents the congruent
transformer bank [4] by dependent sources and leads to a
circuit model consisting of linear-dependent sources and ideal
delay elements representing uncoupled transmission lines.
Simplified versions of the model valid for special cases of
homogeneous electrically identical lines with near-neighbor
coupling only have also been reported [5], [6]. A rigorous
procedure leading to the configuration-oriented equivalent-
circuit model, consisting of a system of transmission lines
only, was reported for the case of homogeneous media in
[7]. Similar useful models valid for special cases of inhomo-
geneous structures have also been proposed and used in the
design of coupled-line circuits [8]–[11].

In this paper, the configuration-oriented SPICE model for
the general case of inhomogeneous multilayer multiconductor
lines is reported. The model consists of a system of trans-
mission lines and has simpler SPICE input data requirements
as compared to the modal decomposition-based models. It is
shown that this configuration-oriented model can, in general,
be implemented for the simulation of lossy and dispersive
multiconductor inhomogeneous structures. The derivation of
the circuit model is based on decomposition of the admittance
or impedance matrix of the coupled-line -port system.
Closed-form expressions for the model parameters for the
important cases of asymmetric coupled lines and symmetri-
cal three coupled-line structures are included in this paper.
Time- and frequency-domain simulation results for typical
structures are presented to demonstrate the applications of the
configuration-oriented SPICE models.

II. EQUIVALENT-CIRCUIT MODEL

The configuration-oriented SPICE model consists of a net-
work of uncoupled transmission lines characterized by their
propagation constants and impedances. The model can be
readily derived from the admittance (impedance) matrix char-
acterizing the -port system, as described in this section.

The procedure for deriving the expression for the admittance
or impedance matrix of the general-port is well known and
is based on the solution of coupled transmission-line equations

(1)

(2)
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where vectors and represent voltages and currents on the
lines and

, , , are the per-unit-length line constant matrices
whose elements are, in general, frequency dependent. The
coupled transmission-line equations (1) and (2) are decoupled
with the help of voltage and corresponding current eigenvector
matrices and , respectively,
leading to the characterization of the generallines -port
by its admittance matrix [12] as given by (see part A in the
Appendix)

(3)

with

where represents theth eigenvalue and is theth normal-
mode propagation constant. is the line-mode admittance
matrix whose element represents the characteristic
admittance of the th line for th mode and is the length
of the uniform coupled multiconductor system. The operator
“ ” was defined in [12] for , as a product
of corresponding terms of matrices and . It is readily
shown that the admittance matrix of the-port, as given by
(3), can be decomposed as

(4)

The represents the partial admittance matrix of the-
port corresponding to mode and can be expressed as

(5)

where

(6)

and

(7)

The symmetric matrix (see part B in the Appendix)
defined in (5) and (6) corresponds to the characteristic admit-
tance matrix for mode , and its th element is given
by

(8)

The matrix in (5) is similar to the -port admittance
matrix corresponding to coupled lines in a homogeneous
medium. Recalling that the admittance matrix of a transmission

line two-port having length , propagation constant, and
characteristic admittance is given as

(9)

Symmetry of implies that the -port network repre-
sented by consists of these transmission lines connected
by a so-called “configuration-oriented” manner [7]. That is,
the partial admittance matrix for mode is synthesized
by a homogeneous configuration-oriented model [7] having
transmission-line electrical lengths corresponding to theth-
mode eigenvalue. The complete network is then obtained as
a parallel combination of the, ports with each -port
corresponding to an orthogonal mode. A similar procedure
can be applied to the impedance matrix leading to a dual
topology and corresponding network of transmission lines that
is equivalent to the multiconductor multiport. It is seen that
the admittance or impedance matrix of anmulticonductor
transmission-line system can, in general, be simulated by

transmission lines. In the case of symmetry,
the number of lines are reduced depending upon the type of
symmetry.

An alternate approach of deriving these circuits involves
the use of the characteristic impedance or admittance matrix
of the coupled system. These matrices represent a network
which simultaneously terminates all the modes on all the
lines. The elements of these matrices represent the charac-
teristic immittance of the transmission lines that constitute
the equivalent circuit. The length of the transmission lines
corresponds to the electrical length of the corresponding
mode. Both the -port and characteristic immittance-matrix-
based decomposition procedures, of course, lead to the same
equivalent-circuit representation (see part C in the Appendix).

III. N ETWORK MODEL FOR UNIFORM COUPLED LINES

The procedure presented in Section II is applied to general
asymmetric and symmetric three-line cases to illustrate the
technique and derive closed-from expressions for the modal
parameters for these two important cases.

A. Asymmetric Coupled Lines

A general uniform coupled two-line system can be decou-
pled in terms of two propagating modesand [13]. The
voltage and corresponding current eigenvector matrices ,

can be defined as ([13])

and

(10)

where and represent eigenvalues and are the normal-
mode propagation constants for theand modes, and
and represent the ratio of voltage on line 2 with respect
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to line 1 for and modes, respectively [13]. The line-mode
admittance matrix is expressed as

(11)

The admittance matrix of the general asymmetric two-line
system [13] obtained from (3), (10), and (11) is expressed as
a sum of two matrices corresponding to the two modes using
(4)–(8), and are found to be

(12)

where

and

(13)

Each matrix and in (12) can be synthesized, in
general, by three transmission lines connected at the input
and output ends in a configuration [7]. These two networks
connected in parallel yield a complete equivalent circuit, as
shown in Fig. 1(a), for the coupled-line system. The expres-
sions for the characteristic admittance of the transmission lines
in the SPICE model in Fig. 1(a) correspond to the admittance
matrices given by (13) and are given by [see part A in the
Appendix, (37) and (38)],

(14)

As noted earlier, the impedance matrix can also be used to
construct an alternate equivalent model of the coupled system.
The impedance matrix of a general asymmetric coupled-line
system given in [13] is readily decomposed into two modes

(15)

Each matrix in (15) can be modeled by three transmission lines
connected in a configuration for each mode. The complete
equivalent circuit is shown in Fig. 1(b). The expressions for

(a)

(b)

Fig. 1. (a) SPICE model for asymmetric coupled lines based on a four-port
admittance matrix. (b) SPICE model based on four-port impedance matrix.
(Tc andT� are the time delays associated with thec and� modes. In case
of lossy coupled lines, the delays and characteristic admittances of uncoupled
transmission lines are function of frequency.)

characteristic impedance of the transmission lines in this
SPICE model [see Fig. 1(b)] are given by

(16)

It should be noted that the characteristic impedance and
admittance matrices of the coupled-line system are symmet-
ric and represent a passive-port network. However, the
characteristic impedance of some transmission lines in the
equivalent circuit can be negative depending on modal decom-
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(a)

(b)

Fig. 2. (a) SPICE model for symmetrical coupled lines based on a four-port
admittance matrix. (b) SPICE model based on four-port impedance matrix.
(teven andtodd are the time delays associated with the even and odd modes.
In case of lossy coupled lines, the delays and characteristic admittances of
uncoupled transmission lines are function of frequency.)

position. The decomposition of the characteristic admittance
matrix (stable and passive network) into the sum ofpartial
admittance matrices leads to a stable configuration-oriented
model in spite of the fact that some of the elements are
not passive. This is like having two equal-length lines in
parallel. For a stable system, one of them can have nega-
tive characteristic admittance as long as the total combined
characteristic admittances of the two lines is positive. These
negative-impedance transmission lines can be simulated by
positive-impedance transmission-line elements with the linear
dependent sources for the impedance conversion or directly
as negative-impedance transmission lines on many computer-
aided design (CAD) tools like LIBRA. Furthermore, in case
of symmetric lossless coupled lines , ,

, and leads to and ,
and the model reduces to the four transmission-line system
presented in [9] [see Fig. 2(a)] or to theequivalent network,
as shown in Fig. 2(b) and .
Similarly, for the case of lossless symmetric coupled lines
in a homogeneous medium , the equivalent system
reduces to a three-transmission-line system, as in [7].

B. Symmetric Three Coupled Lines

For the case of symmetric coupled three-line structures,
the voltage and associated current eigenvector matrices cor-
responding to the three propagating modes, , and are

given by [14]

(17)

and

(18)

The line-mode admittance matrix is

(19)

and , , are the propagation constants associated with the
normal modes , , and [14]. For three symmetric coupled
lines , , and . Substituting
(17)–(19) in (6) leads to the characteristic admittance matrices
for the modes , , and , and are given in (39).

The six-port transmission-line network is then readily con-
structed as three modal networks connected in parallel. The
complete network then consists of 13 transmission lines. The
expressions for the characteristic admittances for the lines are
given as follows [see (37) and (38), part C in the Appendix]:

and

(20)

Transmission lines between ports and terminals are as
follows.

• Ports 1 and 4:

• Ports 2 and 5:
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• Ports 3 and 6:

• Terminal pairs (1, 2) and (4, 5):

• Terminal pairs (2, 3) and (5, 6):

• Terminal pairs (1, 3) and (5, 6):

The electrical length of these transmission lines are given by
the corresponding electrical length of the three modes.

C. Lossy Dispersive Multiconductor Coupled Lines

In general, the coupled-line systems have conductor and
dielectric losses and, therefore, the uncoupled transmission
lines in the configuration-oriented model have frequency-
dependent complex propagation constants and the complex
characteristic impedances. The multiport SPICE simulation for
lossy dispersive multiconductor coupled lines can be accom-
plished by modeling the uncoupled lines obtained from the
formulation presented in Section II in terms of their two-port
frequency-dependent network functions such as- or -
parameters or modeling them in terms of equivalent circuits
consisting of ideal lumped and delay elements, as shown
in [15], for a single microstrip. The frequency-dependent
complex characteristic parameters (propagation constants, line-
mode impedances, eigenvector matrices) are computed using
a rigorous frequency-dependent technique like the spectral-
domain approach [12] or by using CAD-oriented quasi-TEM
methods, e.g., [16]. The model transmission-line parameters
can be obtained in terms of equivalent frequency-dependent
self and mutual line constants per unit length, as shown in [1].
As an example, for the simple case of identical coupled lines,
the even- and odd-mode propagation constants and impedances
are readily expressed as

(21)

and

(22)

in terms of the frequency-dependent equivalent-line constants
representing self and mutual inductances, capacitances, resis-
tances, and conductances per unit length of the lines. For the
case of low losses, (21) and (22) can be simplified as

(23)

(24)

These line constants (, , , , , , , )
can be calculated by using quasi-static as well as full-wave
analysis of the coupled system [1], [12], [16]. For the general
asymmetric coupled lines and multiconductor coupled systems,
the modeling of individual lossy dispersive lines [15] in terms
of network functions, frequency-dependent line constants, or
equivalent circuits is similar to the symmetrical coupled-line
case.

D. The Procedure

The general procedure for building a configuration-oriented
SPICE model of general -line -ports is summarized as
follows.

1) Evaluate propagation constants’s), eigenvector matri-
ces or and line mode admittance matrix

elements using full-wave analysis [1] or com-
pute , , , and matrices using quasi-static
analysis [12] and then evaluate propagation constants
( ’s) and a corresponding voltage eigenvector matrix
using an eigenvalue equation and line mode
admittance matrix whose th element corresponds
to the characteristic admittance of theth line for th
mode [12]–[14].

2) Using (4)–(8), decompose the admittance matrix, as in
(3), into a sum of partial admittance matrices , each
corresponding to the th mode.

3) Each partial admittance matrix corresponding to a prop-
agation mode is synthesized as a-port network with
the two wire transmission lines, as in [7] [see part C in
the Appendix, (37) and (38)], with the transmission line
lengths equal to the electrical length of the respective
mode.

4) Connect the -port networks of each partial admittance
matrix in parallel to obtain the configuration-oriented
SPICE model of a general-line -port.

IV. RESULTS

In order to validate the accuracy of the models and demon-
strate their usefulness and versatility, the frequency- and
time-domain responses of typical coupled-line structures are
presented. Unlike most of the earlier circuit models, the present
model can incorporate conductor, dielectric losses, and the
dispersion due to this losses for the system ofcoupled
lines. The multiconductor -line system can be represented
as a -port (multiport) element, independent of termination
conditions at those ports, enabling us to simulate the-port
with linear and nonlinear terminations in a complex circuit
environment.

Fig. 3 shows the time-domain response of a symmetrical
lossless microstrip line terminated with the impedances given
by at all the four ports. Due to the medium
inhomogeneity, both the even and odd modes are excited and
arrive at the terminating ports at different times, generating
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Fig. 3. Step response of the symmetric lossless coupled microstrip four-port.
�r = 4:5, w1 = w2 = 0:18 mm, s1 = 0:04 mm, h = 0:1 mm, L = 1

mm, strip thickness= 12 �m.

Fig. 4. Time-domain step response of the symmetric coupled microstrip
four-port on FR-4 substrate.�r = 4:5, w1 = w2 = 0:18 mm,
s1 = 0:04 mm, h = 0:1 mm, L = 1 mm, strip thickness= 12 �m.
Loss tangent of dielectric layer (tan�) = 0:05.

far-end crosstalk. Intuitively, it is can be seen that in the
equivalent circuit, for the even-mode excitation, the signal
transmission is only through the transmission lines associated
with the even mode. Similarly, for the odd-mode excitation,
the signal transmission is through the lines associated with the
odd mode. The response is exactly the same as that found by
using the SPICE model based on the modal decomposition [3].

The time-domain step response of a lossy symmetrical cou-
pled line having both dielectric and conductor losses is shown
in Fig. 4. Due to the presence of these losses, the uncoupled
transmission-line expressions given in (14) or (16) are fre-
quency dependent. The approximate expression similar to (23)
and (24) are used to simulate the individual (four) uncoupled
lossy transmission lines given in (14) and (16). The simulations
are performed using the configuration-oriented SPICE models
[“ topology”: Fig. 2(a) and “‘ topology”: Fig. 2(b)] with
the HP-EEsof CAD tools. As expected, the time-domain
waveforms obtained from both the- and -topology-based
configuration-oriented SPICE models are found to be identical.

The time-domain step response of an asymmetric coupled
lossless microstrip structure is shown in Fig. 5. As in the
case above, the simulations are performed using the-
[(14): Fig. 1(a)] and the -topology-based [(16): Fig. 1(b)]
configuration-oriented SPICE models. The obtained time-

Fig. 5. Time-domain response of the asymmetric lossless coupled microstrip
four-port. �r = 9:8, w1 = 0:24 mm, w2 = 0:48 mm, s1 = 0:04 mm,
h = 1:0 mm, L = 9:3 mm, strip thickness= 12 �m.

domain waveforms are found to be identical in both cases.
Additionally, the asymmetric coupled microstrip four-port in
this example is the same as that of [3] and validates the
accuracy of the present model.

Fig. 6 shows the frequency response of edge-coupled two-
section filter simulated by LIBRA using the coupled line
model given in Fig. 1(a). Each section consists of asymmetric
coupled microstrips. The effect of dielectric and conductor
losses are also included in the simulation. The example demon-
strates the application of the configuration-oriented model
presented here for the design of general asymmetric and
multiconductor coupled line circuits. The values of the,

, , and matrices for each asymmetric coupled line
section in this filter are obtained by using a CAD-oriented
quasi-TEM method [16]. The modeling of the individual lossy
dispersive lines is done in terms of network functions [15].
The obtained response in Fig. 6 is similar to that of response
obtained by the simulation of this filter using a full-domain
EM tool (HP-EEsof, Momentum). The configuration-oriented
model can, in general, include the frequency variations of,

, , and matrices and is dependent upon the avail-
ability of a single lossy dispersive transmission-line model,
for which several good CAD-oriented techniques are already
available.

The time-domain response for three symmetrical coupled
lossless lines is shown in Fig. 7 in order to demonstrate the
applicability of the model presented here for the simulation
of multiconductor transmission lines in high-speed digital
circuits. The input and output ports are terminated by 50-
impedances, except port 5, which drives a high-impedance
CMOS inverter. The time-domain step response shows signal
degradation, coupling, and crosstalk effects between the active
and passive lines.

V. CONCLUSIONS

In conclusion, a new configuration-oriented SPICE model
for multiple–coupled microstrip lines and other multiconductor
structures in an inhomogeneous medium has been developed
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(a) (b)

(c)

Fig. 6. Frequency response of a two-section asymmetric coupled microstrip filter on alumina for different dielectric losses (tan� = 0:0002 and
tan � = 0:042). (a) Magnitude ofS11 in decibels. (b) Magnitude ofS21 in decibels. (c) Phase response ofS21. �r = 9:8, w1 = 0:4 mm,
w2 = 0:25 mm, s1 = 0:04 mm, h = 0:63 mm, L = 3:75 mm.

Fig. 7. Step response of the lossless three symmetric coupled microstrip
six-ports (50-
 termination at port 1, 2, 3, 4, 6 and port 5 terminated at high
input impedance CMOS inverter.�r = 12:8, w1 = 0:3 mm, s1 = 0:3 mm,
h = 0:635 mm, strip thickness= 12 �m.

and presented. The model is based on the decomposition of
the general -line -port immittance matrix into a sum of
partial-immittance matrices corresponding to each mode. The
complete equivalent network is obtained by combining the
resulting -port configuration-oriented models synthesized
for each partial immittance matrix. It is observed that

coupled multiconductor lines can, in general, be simulated
transmission lines. The configuration-oriented

SPICE model provides a simple alternate equivalent network
in terms of coupled multiconductor characteristic parame-
ters, which are readily obtained from rigorous full-wave or
quasi-TEM computations. This model is compatible with the
simulation of lossy dispersive systems and should be quite
helpful in the frequency- and time-domain simulation and
design of multiconductor coupled systems. Several frequency-
and time-domain simulation examples have been presented for
typical interconnect and microwave component structures to
demonstrate the applications of the model.

APPENDIX

A. Admittance Matrix: Coupled-Line -Port System

A procedure similar to that in [13] leads to the solution of
coupled transmission-line equations [(1) and (2)] in terms

of normal-mode parameters. Using this procedure, the expres-
sions obtained for the voltages and corresponding currents in
terms of waves is given by

(25)
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(26)

where the columns of matrix are the voltage eigenvec-
tors, is the th normal-mode propagation constant, is
the line-mode admittance matrix, and operator “” is defined
in (3). The admittance matrix for the multiconductor coupled-
line -port system is obtained by combining (25) and (26).
The final expression for the admittance matrix is given in (3).

B. Proof: Is Symmetric

It is clear from (25) and (26) that in a system ofcoupled
lines, these waves actually consist of two independent
sets of waves, each propagating in the opposite direction.
Moreover, these waves satisfy the coupled transmission-line
equations (1) and (2), leading to

(27)

and

(28)

Taking the transpose of (28) and observing that the matrix
and are symmetric yields

(29)

The columns of matrix are the right eigenvectors and
the rows of matrix are left eigenvectors of
matrix . The equation obtained by multiplying on the
right-hand side of (27) by and then subtracting
the equation obtained by multiplying on the left-hand side of
(29) by is

(30)

Equation (30) shows that commutes
with the diagonal matrix of distinct elements and, therefore,
should be diagonal. Therefore,

(31)

The values of depend upon (1) and (2). Combining (31)
with (6) gives

(32)

where the matrix is defined in (7).

C. The Procedure: Based on Characteristic
Admittance or Impedance Matrix

An alternate approach can also be used in deriving the
equivalent circuit with the help of the characteristic impedance
matrix or admittance matrix

. For example, the characteristic admittance
and impedance matrices for the coupled two-line structure,
as given in [13], are

(33)

and

(34)

where and are the ratio of voltage on conductor 2 to
the voltage on conductor 1 for the two modes,, , ,

are corresponding line mode admittances and, ,
, are the line mode impedances.

The above impedance or admittance matrix for two coupled
lines can be expressed as a sum of two matrices, with the

-mode and -mode terms separated as

(35)

and

(36)

These matrices are symmetric and singular. From these ma-
trices, each associated with a mode , the corresponding
configuration-oriented models are obtained by using two wire
transmission lines. The characteristic admittance of the trans-
mission line with its one end connected to portsand is
given by

(37)

(39)
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and the characteristic admittance of the transmission line
connecting port and ground (0) is

(38)

The length of transmission lines corresponds to the electrical
length of mode. Therefore, the matrices and can
be synthesized with six transmission lines leading to the same
equivalent circuits, as shown in Fig. 1(a) and (b).

The characteristic admittance matrix of three symmetrical
coupled lines is derived in a similar manner in terms of the
line-mode admittance of three lines, the mode voltages and
current ratios and propagation constants for the normal modes,
and is given by (39), shown at the bottom of the previous page
[14], where , , , etc. are the line mode admittances
of three lines for modes, , and , and the corresponding
voltage and current eigenvector matrices are defined in (17).
For three symmetric coupled lines, , ,
and . This matrix can be expressed as sum of
three matrices for each mode and is readily realized leading
to the transmission-line network of 13 transmission lines in
a six-port network.
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